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Chapter Two: Kinematics 

2.1 Mechanism: 

A mechanical manipulator can be modelled as an open-loop articulated chain with several rigid 

bodies (links) connected in series by either revolute or prismatic joints driven by actuators. 

One end of the chain is attached to a supporting base while the other end is free and attached with 

a tool (the end-effector) to manipulate objects or perform assembly tasks. The relative motion of the 

joints results in the motion of the links that positions the hand in a desired orientation.  

In most robotic applications, one is interested in the spatial description of the end-effector of the 

manipulator with respect to a fixed reference coordinate system. 

Robot arm kinematics deals with the analytical study of the geometry of motion of a robot arm 

with respect to a fixed reference coordinate system as a function of time without regard to the 

forces/moments that cause the motion. Thus, it deals with the analytical description of the spatial 

displacement of the robot as a function of time, in particular the relations between the joint-variable 

space and the position and orientation of the end-effector of a robot arm. 

Theoretical and practical interest in robot arm kinematics: 

1. For a given manipulator, given the joint angle vector q(t) = (q1(t), q2(t), … qn(t))T and the 

geometric link parameters, where n is the number of degrees of freedom, what is the position and 

orientation of the end-effector of the manipulator with respect to a reference coordinate system? 

2. Given a desired position and orientation of the end-effector of the manipulator and the geometric 

link parameters with respect to a reference coordinate system, can the manipulator reach the desired 

prescribed manipulator hand position and orientation? And if it can, how many different manipulator 

configurations will satisfy the same condition? 

The first question is usually referred to as the direct (or forward) kinematics problem, while the 

second question is the inverse kinematics (or arm solution) problem. 

 
Fig. 2.1: The direct and inverse kinematics problems. 
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2.2 Matrix representation: 

 

2.2.1 Rotation Matrix: 

Let the point p represented by its coordinates with respect to the OUVW and OXYZ coordinate 

systems, respectively, as 

puvw = (pu, pv, pw) and pxyz = (px, py, pz)  (1) 

We would like to find a 3 x 3 transformation matrix R that will transform the coordinates of puvw 

to the coordinates expressed with respect to the OXYZ coordinate system, after the OUVW coordinate 

system has been rotated. That is, 

pxyz = Rpuvw     (2) 

Note that physically the point puvw has been rotated together with the OUVW coordinate system. 

Recalling the definition of the components of a vector, we have 

puvw = pu iu + pv jv + pw kw    (3) 

where px, py, and pz represent the components of p along the OX, OY, and OZ axes, respectively, 

or the projections of p onto the respective axes. Thus, using the definition of a scalar product and 

Eq.(3) 

px = ix . p = ix . iu pu + ix . jv pv + ix . kw pw  

py = jy . p = jy . iu pu + jy . jv pv + jy . kw pw    (4) 

px = kz . p = kz . iu pu + kz . jv pv + kz . kw pw  

or expressed in matrix form, 

  (5) 

Using this notation, the matrix R in Eq. (2) is given by 

    (6) 

Similarly, one can obtain the coordinates of puvw from the coordinates of pxyz: 

puvw = Q pxyz   (7) 

  (8) 

Since dot products are commutative, one can see from Eqs. (6) to (8) that 

Q = R-1 = RT   (9) 

RQ = RRT = RR-1 = I3  (10) 

where I3 is a 3 x 3 identity matrix. The transformation given in Eq. (2) or (7) is called an orthogonal 

transformation and since the vectors in the dot products are all unit vectors, it is also called an 

orthonormal transformation. 
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The primary interest in developing the above transformation matrix is to find the rotation 

matrices that represent rotations of the OUVW coordinate system about each of the three principal 

axes of the reference coordinate system OXYZ. If the OUVW coordinate system is rotated an  angle 

about the OX axis to arrive at a new location in the space, then the point puvw having coordinates (pu, 

pv, pw)T with respect to the OUVW system will have different coordinates (px, py, pz)T with respect to 

the reference system OXYZ.  

The necessary transformation matrix Rx, is called the rotation matrix about the OX axis with  

angle. Rx, can be derived from the above transformation matrix concept, that is 

pxyz = Rx, puvw    (11) 

with ix = iu 

  (12) 

Similarly, the 3 x 3 rotation matrices for rotation about the OY axis with  angle and about the OZ 

axis with  angle are, respectively (see Fig. 2.2), 

 (13) 

The matrices Rx,, Ry,, and Rz, are called the basic rotation matrices. Other finite rotation matrices 

can be obtained from these matrices. 
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Fig. 2.2: Rotating coordinate systems. 
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Example 2.1: Given two points auvw = (4, 3, 2)T and buvw = (6, 2, 4)T with respect to the rotated 

OUVW coordinate system, determine the corresponding points axyz, bxyz, with respect to the reference 

coordinate system if it has been rotated 60° about the OZ axis. 

Solution: axyz = Rz,60 auvw and bxyz = RZ,60 buvw 

 
Thus, axyz and bxyz are equal to (-0.598, 4.964, 2.0)T and (1.268, 6.196, 4.0)T, respectively, when 

expressed in terms of the reference coordinate system. 

 

Example 2.2: If axyz = (4, 3, 2)T and bxyz = (6, 2, 4)T are the coordinates with respect to the reference 

coordinate system, determine the corresponding points auvw, buvw with respect to the rotated OUVW 

coordinate system if it has been rotated 60° about the OZ axis. 

Solution: auvw = (Rz,60)T axyz , buvw = (Rz,60)T bxyz 
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2.2.2 Composite Rotation Matrix: 

Basic rotation matrices can be multiplied together to represent a sequence of finite rotations about 

the principal axes of the OXYZ coordinate system. Since matrix multiplications do not commute, the 

order or sequence of performing rotations is important 

In addition to rotating about the principal axes of the reference frame OXYZ, the rotating 

coordinate system OUVW can also rotate about its own principal axes. In this case, the resultant or 

composite rotation matrix may be obtained from the following simple rules: 

1. Initially both coordinate systems are coincident; hence, the rotation matrix is a 3 x 3 identity 

matrix, I3. 

2. If the rotating coordinate system OUVW is rotating about one of the principal axes of the 

OXYZ frame, then premultiply the previous (resultant) rotation matrix with an appropriate 

basic rotation matrix. 

3. If the rotating coordinate system OUVW is rotating about its own principal axes, then 

postmultiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix. 

 

Example 2.3: Find the resultant rotation matrix that represents a rotation of  angle about the OY 

axis followed by a rotation of  angle about the OW axis followed by a rotation of  angle about the 

OU axis. 

SOLUTION: 

R = Ry, I3 Rw, Ru, = Ry, Rw, Ru, 

 
 

2.2.3 Rotation Matrix with Euler Angles Representation 

The matrix representation for rotation of a rigid body simplifies many operations, but it needs nine 

elements to completely describe the orientation of a rotating rigid body. It does not lead directly to a 

complete set of generalized coordinates. Such a set of generalized coordinates can describe the 

orientation of a rotating rigid body with respect to a reference coordinate frame. They can be provided 

by three angles called Euler angles , , and . Although Euler angles describe the orientation of a 

rigid body with respect to a fixed reference frame, there are many different types of Euler angle 

representations. The three most widely used Euler angles representations are tabulated in Table 2.1. 
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The first Euler angle representation in Table 2.1 is usually associated with gyroscopic motion. This 

representation is usually called the eulerian angles, and corresponds to the following sequence of 

rotations 

1. A rotation of  angle about the OZ axis (Rz,) 

2. A rotation of  angle about the rotated OU axis (Ru,) 

3. Finally a rotation of  angle about the rotated OW axis (Rw,) 

The resultant eulerian rotation matrix is 

 

Another set of Euler angles , , and  representation corresponds to the following sequence of 

rotations: 

1. A rotation of  angle about the OZ axis (Rz,) 

2. A rotation of  angle about the rotated OV axis (Rv,) 

3. Finally a rotation of  angle about the rotated OW axis (Rw,) 

The resultant rotation matrix is 
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Another set of Euler angles representation for rotation is 

called roll, pitch, and yaw (RPY). This is mainly used in 

aeronautical engineering in the analysis of space vehicles. They 

correspond to the following rotations in sequence: 

1. A rotation of  about the OX axis (Rx,)-yaw 

2. A rotation of  about the OY axis (Ry,)-pitch 

3. A rotation of  about the OZ axis (Rz,)-roll 

The resultant rotation matrix is 

 

 
 

2.3 Homogenous transformation: 

The homogeneous transformation matrix is a 4 x 4 matrix which maps a position vector expressed 

in homogeneous coordinates from one coordinate system to another coordinate system. A 

homogeneous transformation matrix can be considered to consist of four submatrices: 

  (14) 

The upper-left 3 x 3 submatrix represents the rotation matrix; the upper right 3 x 1 submatrix 

represents the position vector of the origin of the rotated coordinate system with respect to the reference 

system; the lower left 1 x 3 submatrix represents perspective transformation; and the fourth diagonal 

element is the global scaling factor. The homogeneous transformation matrix can be used to explain 

the geometric relationship between the bodies attached frame OUVW and the reference coordinate 

system OXYZ. 

If a position vector p in a three-dimensional space is expressed in homogeneous coordinates [i.e., 

ṕ = (px, py, pz, 1)T], then using the transformation matrix concept, a 3 x 3 rotation matrix can be 

extended to a 4 x 4 homogeneous transformation matrix Trot for pure rotation operations. Thus, 

Eqs.(12) and (13), expressed as homogeneous rotation matrices, become 
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     (15) 

These 4 x 4 rotation matrices are called the basic homogeneous rotation matrices. 

The upper right 3 x 1 submatrix of the homogeneous transformation matrix has the effect of 

translating the OUVW coordinate system which has axes parallel to the reference coordinate system 

OXYZ but whose origin is at (dx, dy, dz) of the reference coordinate system: 

      (16) 

This 4 x 4 transformation matrix is called the basic homogeneous translation matrix. 

The principal diagonal elements of a homogeneous transformation matrix produce local and global 

scaling. The first three diagonal elements produce local stretching or scaling, as in 

     (17) 

Thus, the coordinate values are stretched by the scalars a, b, and c, respectively. Note that the basic 

rotation matrices, Trot, do not produce any local scaling effect. The fourth diagonal element produces 

global scaling as in 

    (18) 

where s > 0. The physical Cartesian coordinates of the vector are 

  (19) 

Therefore, the fourth diagonal element in the homogeneous transformation matrix has the effect of 

globally reducing the coordinates if s > 1 and of enlarging the coordinates if 0 < s < 1. 
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In summary, a 4 X 4 homogeneous transformation matrix maps a vector expressed in homogeneous 

coordinates with respect to the OUVW coordinate system to the reference coordinate system OXYZ. 

That is, with w = 1, 

Pxyz = T puvw      (20) 

   (21) 

In general, the inverse of a homogeneous transformation matrix can be found to be 

  (22) 

 

The homogeneous rotation and translation matrices can be multiplied together to obtain a 

composite homogeneous transformation matrix (we shall call it the T matrix). However, since matrix 

multiplication is not commutative, careful attention must be paid to the order in which these matrices 

are multiplied. The following rules are useful for finding a composite homogeneous transformation 

matrix: 

1. Initially both coordinate systems are coincident, hence the homogeneous transformation matrix 

is a 4 x 4 identity matrix, I4. 

2. If the rotating coordinate system OUVW is rotating/translating about the principal axes of the 

OXYZ frame, then premultiply the previous (resultant) homogeneous transformation matrix 

with an appropriate basic homogeneous rotation/translation matrix. 

3. If the rotating coordinate system OUVW is rotating/translating about its own principal axes, 

then postmultiply the previous (resultant) homogeneous transformation matrix with an 

appropriate basic homogeneous rotation/translation matrix. 

Example 2.4: Two points auvw = (4, 3, 2)T and buvw = (6, 2, 4)T are to be translated a distance +5 

units along the OX axis and -3 units along the OZ axis. Using the appropriate homogeneous 

transformation matrix, determine the new points axyz and bxyz. 

Solution: 
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The translated points are axyz = (9, 3, -1)T and bxyz. = (11, 2, 1)T. 

 

Example 2.5: A T matrix is to be determined that represents a rotation of a angle about the OX 

axis, followed by a translation of b units along the rotated OV axis. 

Solution: 

In the orthodox approach, following the rules as stated earlier, one should realize that since the 

Tx,, matrix will rotate the OY axis to the OV axis, then translation along the OV axis will accomplish 

the same goal, that is, 

 
 

Example: Find a homogeneous transformation matrix T that represents a rotation of  angle about 

the OX axis, followed by a translation of a units along the OX axis, followed by a translation of d units 

along the OZ axis, followed by a rotation of  angle about the OZ axis. 

SOLUTION: 

T = Tz, Tz,d Tx,a Tx, 
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2.4 D-H representation: 

A mechanical manipulator consists of a sequence of rigid bodies, called links, connected by either 

revolute or prismatic joints (see Fig. 2.3). Each joint-link pair constitutes 1 degree of freedom. Hence, 

for an N degree of freedom manipulator, there are N joint-link pairs with link 0 (not considered part 

of the robot) attached to a supporting base where an inertial coordinate frame is usually established for 

this dynamic system, and the last link is attached with a tool. The joints and links are numbered 

outwardly from the base; thus, joint 1 is the point of connection between link 1 and the supporting 

base. Each link is connected to, at most, two others so that no closed loops are formed. 

A joint axis (for joint i) is established at the connection of two links (see Fig. 2.4). This joint axis 

will have two normal connected to it, one for each of the links. The relative position of two such 

connected links (link i - 1 and link i) is given by di which is the distance measured along the joint axis 

between the normal. The joint angle i between the normal is measured in a plane normal to the joint 

axis. Hence, di and i may be called the distance and the angle between the adjacent links, respectively. 

They determine the relative position of neighbouring links. 

A link i (i = 1, ... , 6 ) is connected to, at most, two other links (e.g., link i - 1 and link i + 1); thus, 

two joint axes are established at both ends of the connection. The significance of links, from a 

kinematic perspective, is that they maintain a fixed configuration between their joints, which can be 

characterized by two parameters: ai and i. The parameter ai is the shortest distance measured along 

the common normal between the joint axes (i.e., the zi-1 and zi axes for joint i and joint i+1, 

respectively), and i is the angle between the joint axes measured in a plane perpendicular to ai. Thus, 

ai and i may be called the length and the twist angle of the link i, respectively. They determine the 

structure of link i. 
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Fig. 2.3: A PUMA robot arm illustrating joints and links. 

 
Fig. 2.4 Link coordinate system and its parameters. 
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In summary, four parameters, ai, i, di, and i, are associated with each link of a manipulator. If a 

sign convention for each of these parameters has been established, then these parameters constitute a 

sufficient set to completely determine the kinematic configuration of each link of a robot arm. Note 

that these four parameters come in pairs: the link parameters (ai, i) which determine the structure of 

the link and the joint parameters (di, i) which determine the relative position of neighbouring links. 

The Denavit-Hartenberg (D-H) representation results in a 4 x 4 homogeneous transformation 

matrix representing each link's coordinate system at the joint with respect to the previous link's 

coordinate system. Thus, through sequential transformations, the end-effector expressed in the "hand 

coordinates" can be transformed and expressed in the "base coordinates" which make up the inertial 

frame of this dynamic system. 

An orthonormal Cartesian coordinate system (xi, yi, zi)t can be established for each link at its joint 

axis, where i = 1 , 2, ... ,n (n = number of degrees of freedom) plus the base coordinate frame. Since a 

rotary joint has only 1 degree of freedom, each (xi, yi, zi) coordinate frame of a robot arm corresponds 

to joint i + 1 and is fixed in link i. When the joint actuator activates joint i, link i will move with respect 

to link i - 1. Since the ith coordinate system is fixed in link i, it moves together with the link i. Thus, 

the nth coordinate frame moves with the hand (link n). The base coordinates are defined as the 0th 

coordinate frame (xo, yo, zo) which is also the inertial coordinate frame of the robot arm. Thus, for a 

six-axis PUMA-like robot arm, we have seven coordinate frames, namely, (xo, yo, zo), (x1, y1, z1), … , 

(x6, y6, z6). 

Every coordinate frame is determined and established on the basis of three rules: 

1. The zi-1 axis lies along the axis of motion of the ith joint. 

2. The xi axis is normal to the zi-1 axis, and pointing away from it. 

3. The yi axis completes the right-handed coordinate system as required. 

The D-H representation of a rigid link depends on four geometric parameters associated with each 

link. These four parameters completely describe any revolute or prismatic joint. Referring to Fig. 2.4, 

these four parameters are defined as follows: 

i is the joint angle from the xi-1 axis to the xi axis about the zi-1 axis (using the right-hand rule). 

di is the distance from the origin of the (i -1)th coordinate frame to the intersection of the zi-1 axis 

with the xi axis along the zi-1 axis. 

ai is the offset distance from the intersection of the zi-1 axis with the xi axis to the origin of the ith 

frame along the xi axis (or the shortest distance between the zi-1 and zi axes). 

i is the offset angle from the zi-1 axis to the zi axis about the xi axis (using the right-hand rule). 

For a rotary joint, di, ai, and i are the joint parameters and remain constant for a robot, while i is 

the joint variable that changes when link i moves (or rotates) with respect to link i - 1. For a prismatic 

joint, i, ai, and i are the joint parameters and remain constant for a robot, while di is the joint variable. 

Examples of a six-axis PUMA-like robot arm and a Stanford arm are given in Figs. 2.5 and 2.6, 

respectively. 
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Fig. 2.5: Establishing link coordinate systems for a PUMA robot. 
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Fig. 2.6: Establishing link coordinate systems for a Stanford robot. 
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Once the D-H coordinate system has been established for each link, a homogeneous transformation 

matrix can easily be developed relating the ith coordinate frame to the (i-1)th coordinate frame. 

Looking at Fig. 2.5, it is obvious that a point ri expressed in the ith coordinate system may be expressed 

in the (i-1)th coordinate system as ri-1 by performing the following successive transformations: 

1. Rotate about the zi-1 axis an angle of i to align the xi-1 axis with the xi axis (xi-1 axis is parallel 

to xi and pointing in the same direction). 

2. Translate along the zi-1 axis a distance of di to bring the xi-1 and xi axes into coincidence. 

3. Translate along the xi axis a distance of ai to bring the two origins as well as the x-axis into 

coincidence. 

4. Rotate about the xi axis an angle of i to bring the two coordinate systems into coincidence. 

Each of these four operations can be expressed by a basic homogeneous rotation-translation matrix 

and the product of these four basic homogeneous transformation matrices yields a composite 

homogeneous transformation matrix, i-1Ai, known as the D-H transformation matrix for adjacent 

coordinate frames, i and i - 1. Thus, 
i-1Ai = Tz,d Tz, Tx,a Tx,  

 

   (23) 

Using Eq. (22), the inverse of this transformation can be found to be 

 (24) 

where i, ai, di are constants while i is the joint variable for a revolute joint. 

For a prismatic joint, the joint variable is di, while i, ai, and i are constants. In this case, i-1Ai 

becomes 

  (25) 
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  (26) 

Using the i-1Ai matrix, one can relate a point pi at rest in link i, and expressed in homogeneous 

coordinates with respect to coordinate system i, to the coordinate system i - 1 established at link i - 1 

by 

Pi-1 = i-1Ai  pi   (27) 

where pi-1 = (xi-1, yi-1, zi-1, 1)T and pi = (xi, yi, zi, 1)T. 

The six i-1Ai transformation matrices for the six-axis PUMA robot arm have been found on the basis of the 

coordinate systems established in Fig. 2.5. These i-1Ai matrices are listed in Fig. 2.7. 

 

 

 
Fig. 2.7: PUMA link coordinate transformation matrices. 
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The homogeneous matrix 0Ti which specifies the location of the ith coordinate frame with respect 

to the base coordinate system is the chain product of successive coordinate transformation matrices of 
i-1Ai, and is expressed as 

0 0 1 1 1

1 2

1

  ,               for 1,2,...,
i

i j

i i j

j

T A A A i nA  



     

    (28) 

Where 

[xi, yi, zi] = orientation matrix of the ith coordinate system established at link i with respect to the 

base coordinate system. It is the upper left 3 x 3 partitioned matrix of °Ti. 

pi = position vector which points from the origin of the base coordinate system to the origin of the 

ith coordinate system. It is the upper right 3 X 1 partitioned matrix of °Ti. 

Specifically, for i = 6, we obtain the T matrix, T = °A6, which specifies the position and orientation 

of the endpoint of the manipulator with respect to the base coordinate system. This T matrix is used so 

frequently in robot arm kinematics that it is called the "arm matrix." Consider the T matrix to be of the 

form 

   (29) 

where (see Fig. 2.8) 

n = normal vector of the hand. Assuming a parallel jaw hand, it is orthogonal to the fingers of the 

robot arm. 

s = sliding vector of the hand. It is pointing in the direction of the finger motion as the gripper 

opens and closes. 

a = approach vector of the hand. It is pointing in the direction normal to the palm of the hand (i.e., 

normal to the tool mounting plate of the arm). 

p = position vector of the hand. It points from the origin of the base coordinate system to the origin 

of the hand coordinate system, which is usually located at the centre point of the fully closed fingers. 
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Fig. 2.8: Hand coordinate system and [n, s, a]. 

If the manipulator is related to a reference coordinate frame by a transformation B and has a tool 

attached to its last joint's mounting plate described by H, then the endpoint of the tool can be related 

to the reference coordinate frame by multiplying the matrices B, °T6, and H together as 
refTTool = B 0T6 H    (30) 

Note that H = 6Atool and B = refA0. 

The direct kinematics solution of a six-link manipulator is, therefore, simply a matter of calculating 

T = °A6 by chain multiplying the six i-1Ai matrices and evaluating each element in the T matrix. 

A method that has both fast computation and flexibility is to "hand" multiply the first three i-1Ai 

matrices together to form T1 = °A1 1A2 2A3 and also the last three i-1Ai matrices together to form T2 = 
3A4 4A5 5A6, which is a fairly straightforward task. Then, we express the elements of T1 and T2 out in 

a computer program explicitly and let the computer multiply them together to form the resultant arm 

matrix T = T1 T2. 

For a PUMA 560 series robot, T1 is found from Fig. 2.7 to be 0A3 

T1 = 0A3 = 0A1 1A2 2A3 

   (31) 

and the T2 matrix is found to be 

T2 = 3A6 = 3A4 4A5 5A6 
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  (32) 

where Cij = cos (i + j) and Sij = sin(i + j). 

The arm matrix T for the PUMA robot arm is found to be 

  (33) 

Where 

  (34) 

 (35) 

      (36) 

(37) 

As a check, if 1 =90o, 2 = 0o, 3 = 90o, 4 = 0o, 5 = 0o, 6 = 0o, then the T matrix is 

 
which agrees with the coordinate systems established in Fig. 2.5. 

 



Principles of Robotics  4th Year 

 
 

 
46 | Electrical Engineering Department/Basrah University      Dr. Mofeed Turky Rashid 

 

 

Example 2.6: A robot work station has been set up with a TV camera (see the figure). The camera 

can see the origin of the base coordinate system where a six joint robot is attached. It can also see the 

center of an object (assumed to be a cube) to be manipulated by the robot. If a local coordinate system 

has been established at the center of the cube, this object as seen by the camera can be represented by 

a homogeneous transformation matrix T1. If the origin of the base coordinate system as seen by the 

camera can also be expressed by a homogeneous transformation matrix T2 and 

 
(a) What is the position of the centre of the cube with respect to the base coordinate system? 

(b) Assume that the cube is within the arm's reach. What is the orientation matrix [n, s, a] if you 

want the gripper (or finger) of the hand to be aligned with the y axis of the object and at the same time 

pick up the object from the top? 

 
Solution: 

   
To find basercube, we use the "chain product" rule: 
baseTcube = baseTcamera cameraTcube = (T2)-1 T1 

Using Eq. (22) to invert the T2 matrix, we obtain the resultant transformation matrix: 
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Therefore, the cube is at location (11, 10, 1)T from the base coordinate system. 

Its x, y, and z axes are parallel to the -y, x, and z axes of the base coordinate system, respectively. 

To find [n, s, a], we make use of 

 
where p = (11, 10, 1)T from the above solution. From the above figure, we want the approach vector 

a to align with the negative direction of the OZ axis of the base coordinate system [i.e., a = (0, 0, -1)T]; 

the s vector can be aligned in either direction of the y axis of baseTcabe [i.e., s = (± 1, 0, 0)T]; and the n 

vector can be obtained from the cross product of s and a: 

 
Therefore, the orientation matrix [n, s, a] is found to be 

 
 

 

2.5 Inverse kinematics: 

In order to control the position and orientation of the end-effector of a robot to reach its object, the 

inverse kinematics solution is more important. In other words, given the position and orientation of 

the end-effector of a six-axis robot arm as °T6 and its joint and link parameters, we would like to find 

the corresponding joint angles q = (q1, q2, q3, q4, q5, q6)T, T of the robot so that the end-effector can be 

positioned as desired. 

We shall show the basic concept of the inverse transform technique by applying it to solve for the 

Euler angles. Since the 3 x 3 rotation matrix can be expressed in terms of the Euler angles (, , ), 

and given 
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We would like to find the corresponding value of , , . Equating the elements of the above 

matrix equation, we have: 

 
A solution to the above nine equations is: 

 
The above solution is inconsistent and ill conditioned because: 

1. The arc cosine function does not behave well as its accuracy in determining the angle is 

dependent on the angle. That is, cos () = cos (-). 

2. When sin (0) approaches zero, that is,   0° or   180°, Eq. (39) and (40) give inaccurate 

solutions or are undefined. 

We must, therefore, find a more consistent approach to determining the Euler angle solution and a 

more consistent arc trigonometric function in evaluating the angle solution. In order to evaluate  for 

(38) 

 

(39) 

 

 

(40) 
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-    , an arc tangent function, atan2 (y, x), which returns tan-1(y/x) adjusted to the proper quadrant 

will be used. It is defined as: 

 

Premultiplying the above matrix equation by Rz,
-1, we have one unknown on the LHS and two 

unknowns () on the RHS of the matrix equation, thus we have 

  (41) 

Equating the (1, 3) elements of both matrices in Eq. (41), we have: 

 
Which gives 

 
Equating the (1, 1) and (1, 2) elements of the both matrices, we have: 

 
Equating the (2, 3) and (3, 3) elements of the both matrices, we have: 
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H.W: Solve the above matrix equation for , ,  by postmultiplying the above matrix equation by 

its inverse transform Rw,
-1 ? 

 

Example 2.7: Let us apply this inverse transform technique to solve the Euler angles for a PUMA 

robot arm (OAT solution of a PUMA robot). PUMA robots use the symbols O, A, T to indicate the 

Euler angles and their definitions are given as follows (with reference to Fig. 2.9): 

O (orientation) is the angle formed from the yo axis to the projection of the tool a axis on the XY 

plane about the zo axis. 

A (altitude) is the angle formed from the XY plane to the tool a axis about the s axis of the tool. 

T (tool) is the angle formed from the XY plane to the tool s axis about the a axis of the tool. 

Initially the tool coordinate system (or the hand coordinate system) is aligned with the base 

coordinate system of the robot as shown in Fig. 2.10.  

Solution: 

When O = A = T = 0 °, the hand points in the negative yo axis with the fingers in a horizontal plane, 

and the s axis is pointing to the positive xo axis transform that describes the orientation of the hand 

coordinate system (n, s, a) with respect to the base coordinate system (xo, yo, zo) is given by 

 
From the definition of the OAT angles and the initial alignment matrix, the relationship between 

the hand transform and the OAT angle is given by 

 
Postmultiplying the above matrix equation by the inverse transform of Ra,T, 
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and multiplying the matrices out, we have: 

 
Equating the (3, 2) elements of the above matrix equation, we have: 

 
which gives the solution of T, 

 
Equating the (3, 1) and (3, 3) elements of the both matrices, we have: 

 

 
then the above equations give 

 
Equating the (1, 2) and (2, 2) elements of the both matrices, we have: 

 
which give the solution of O, 
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Fig. 2.9: Definition of Euler angles 0, A, and T. (Taken from PUMA robot manual 398H.) 

 
Fig. 2.10: Initial alignment of tool coordinate system. 


